skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DenBaars, Steven P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. A heterogeneously integrated InGaN laser diode (LD) on Si is proposed as a path toward visible wavelength photonic integrated circuits (PICs) on Si. Herein, InGaN films are vertically stacked on a TiO2waveguide (WG) fabricated on a Si wafer by bonding. In the light propagation direction, it is composed of a hybrid InGaN/TiO2section, a TiO2WG, an adiabatic taper, and mirrors that can form a cavity. As the refractive index of GaN is well matched with that of TiO2, the optical transverse mode extends to both the GaN and TiO2in a hybrid mode. Modes between a hybrid InGaN/TiO2and a pure TiO2WG can transfer with an adiabatic taper structure. The coupling loss is calculated to be less than 0.5 dB with fairly short taper length of 78 μm and tip width of 200 nm. GaN substrate removal and bonding are critical fabrication steps of this LD and PIC. The substrate removal is successfully done by photoelectrochemical etching. Although direct bonding of GaN wafers with thermal oxide on Si is successful, GaN epitaxial wafers are more difficult. An implication and remedy of this is discussed in terms of surface roughness of GaN epitaxial film. 
    more » « less